If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+5w-1=0
a = 6; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·6·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*6}=\frac{-12}{12} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*6}=\frac{2}{12} =1/6 $
| (x+1)(x+6)=14 | | 5(x-5)=4(x+20) | | 2^x+2^(x+3)=72 | | 22=7s+8 | | 374=6m+26 | | 2(x-4)-(x+2)=x-5(x-2) | | 26+×=35-y | | 3e-12=2e-3 | | 368.62=190+0.78x | | 4(2n+4)=6(9n+9)+7 | | 8x-1=9x+0.75 | | (X+3)(-x+5)=0 | | 14v+6=2(5 | | 3x+x+x+x-3-2=7+x+x | | z=24/5 | | 8(x+4)-7=25 | | (-(-)(-)(-10x)=-5 | | (x+1)/(2+3x)=2/(3x)+x/3/(x+2/3)+1/(3x+2) | | 3/4x=1/2x+1/3 | | .33x-10=-12 | | 3x-52+-3x+56=-3x-67 | | 7+2c=17 | | -3(2x-4)=30x-5(2+5x) | | 4=36/s | | 3s+8=14 | | -3(2x-4)=32x-5(2+5x) | | 3x+4x+6x+8x-24=12x+192 | | 4x=3/x+11 | | 6x²+5x–3=0 | | 3u+4=34 | | (12x-20)-(14x-28)=-56 | | 17362(x+66129)=3x |